Configuration spaces and homological stability

Martin Palmer // 5th July 2012

Configuration spaces - Definition

Definition

The (un)ordered configuration space associated to a background space ${\cal M}$ is

$$\begin{array}{ll} \text{(ordered)} & \widetilde{C}_n(M) \; \coloneqq \; \{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \; \text{for} \; i \neq j\} \\ \\ \text{(unordered)} & C_n(M) \; \coloneqq \; \{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \; \text{for} \; i \neq j\} \big/ \Sigma_n \end{array}$$

Configuration spaces - Definition

Definition

The (un)ordered configuration space associated to a background space ${\cal M}$ is

$$\begin{array}{ll} \text{(ordered)} & \widetilde{C}_n(M) \; \coloneqq \; \{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \; \text{for} \; i \neq j\} \\ \\ \text{(unordered)} & C_n(M) \; \coloneqq \; \{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \; \text{for} \; i \neq j\} \big/ \Sigma_n \end{array}$$

- M is usually a manifold
- \bullet Think of this as the space of all configurations of n particles living inside M
- Note that the topology is such that particles cannot collide

$$M = \mathbb{R}$$

 $\bullet \ \ C_n(\mathbb{R}) = \Delta^n \qquad \text{ open n-simplex}$

$$M = \mathbb{R}$$

- ullet $C_n(\mathbb{R})=\Delta^n$ open $n ext{-simplex}$
- $\widetilde{C}_n(\mathbb{R}) = \bigsqcup_{n!} \Delta^n$

$$M = \mathbb{R}$$

- $C_n(\mathbb{R}) = \Delta^n$ open n-simplex
- $\widetilde{C}_n(\mathbb{R}) = \bigsqcup_{n!} \Delta^n$

$$M = S^1$$

n points in $S^1 \equiv$ one point p in S^1 plus (n-1) points in $S^1 \setminus \{p\} \cong \mathbb{R}$

$$M = \mathbb{R}$$

- $C_n(\mathbb{R}) = \Delta^n$ open n-simplex
- $\widetilde{C}_n(\mathbb{R}) = \bigsqcup_{n!} \Delta^n$

$$M = S^1$$

n points in $S^1\equiv$ one point p in S^1 plus (n-1) points in $S^1\setminus\{p\}\cong\mathbb{R}$ So:

•
$$\widetilde{C}_n(S^1) = S^1 \times \widetilde{C}_{n-1}(\mathbb{R})$$

$$M = \mathbb{R}$$

- $C_n(\mathbb{R}) = \Delta^n$ open n-simplex
- $\widetilde{C}_n(\mathbb{R}) = \bigsqcup_{n!} \Delta^n$

$$M = S^1$$

n points in $S^1 \equiv$ one point p in S^1 plus (n-1) points in $S^1 \setminus \{p\} \cong \mathbb{R}$ So:

•
$$\widetilde{C}_n(S^1) = S^1 \times \widetilde{C}_{n-1}(\mathbb{R}) = \bigsqcup_{(n-1)!} (S^1 \times \Delta^{n-1})$$

$$M = \mathbb{R}$$

- $C_n(\mathbb{R}) = \Delta^n$ open n-simplex
- $\widetilde{C}_n(\mathbb{R}) = \bigsqcup_{n!} \Delta^n$

$$M = S^1$$

n points in $S^1 \equiv$ one point p in S^1 plus (n-1) points in $S^1 \setminus \{p\} \cong \mathbb{R}$ So:

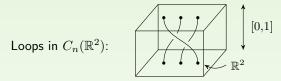
- $\widetilde{C}_n(S^1) = S^1 \times \widetilde{C}_{n-1}(\mathbb{R}) = \bigsqcup_{(n-1)!} (S^1 \times \Delta^{n-1})$
- $C_n(S^1) = ?$

$$\widetilde{C}_2(S^1) =$$

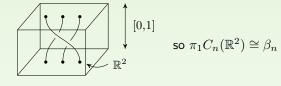
$$\widetilde{C}_2(S^1) =$$

$$C_2(S^1) =$$

$$=$$

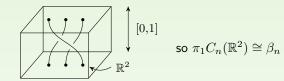


Loops in $C_n(\mathbb{R}^2)$:



• $C_n(\mathbb{R}^2) \simeq B(\beta_n)$ classifying space of the braid group on n strands

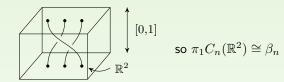
Loops in $C_n(\mathbb{R}^2)$:



- $C_n(\mathbb{R}^2) \simeq B(\beta_n)$
- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$

classifying space of the braid group on n strands classifying space of the pure braid group

Loops in
$$C_n(\mathbb{R}^2)$$
:



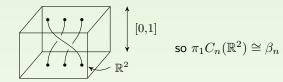
- $C_n(\mathbb{R}^2) \simeq B(\beta_n)$
- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$

classifying space of the braid group on n strands classifying space of the pure braid group

In general, $C_n(S)$ is aspherical for any connected open surface S, so

ullet $C_n(S)\simeq B(eta_n^S)$ classifying space of the surface braid group

Loops in
$$C_n(\mathbb{R}^2)$$
:



- $C_n(\mathbb{R}^2) \simeq B(\beta_n)$
- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$

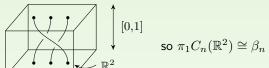
classifying space of the braid group on \boldsymbol{n} strands

classifying space of the pure braid group

In general, $C_n(S)$ is aspherical for any connected open surface S, so

- ullet $C_n(S) \simeq B(eta_n^S)$ classifying space of the surface braid group
- ullet $\widetilde{C}_n(S)\simeq B(Peta_n^S)$ classifying space of the pure surface braid group

Loops in
$$C_n(\mathbb{R}^2)$$
:



- $C_n(\mathbb{R}^2) \simeq B(\beta_n)$
- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$

classifying space of the braid group on n strands

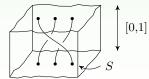
classifying space of the pure braid group

In general, $C_n(S)$ is aspherical for any connected open surface S, so

- $\widetilde{C}_n(S) \simeq B(P\beta_n^S)$

ullet $C_n(S) \simeq B(eta_n^S)$ classifying space of the surface braid group

classifying space of the pure surface braid group



Braids in \mathbb{R}^{∞} are determined by the induced permutation of their endpoints.

Braids in \mathbb{R}^{∞} are determined by the induced permutation of their endpoints.

So $\pi_1 C_n(\mathbb{R}^{\infty}) \cong \Sigma_n$, the symmetric group on n letters.

• $C_n(\mathbb{R}^\infty) \simeq B(\Sigma_n)$

Braids in \mathbb{R}^{∞} are determined by the induced permutation of their endpoints.

So $\pi_1 C_n(\mathbb{R}^{\infty}) \cong \Sigma_n$, the symmetric group on n letters.

- $C_n(\mathbb{R}^\infty) \simeq B(\Sigma_n)$
- $\widetilde{C}_n(\mathbb{R}^\infty) \simeq *$

Configuration spaces - with labels

Configuration spaces - with labels

We can also attach labels, or parameters, to the particles in our configuration space.

Configuration spaces - with labels

We can also attach labels, or parameters, to the particles in our configuration space. Fixing a

- background space M
- ullet parameter space X

Definition

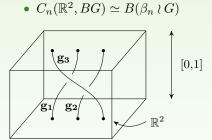
The (un)ordered configuration space with labels in X is

$$\begin{split} \widetilde{C}_n(M,X) \; &\coloneqq \; \{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \text{ for } i \neq j\} \times X^n \\ C_n(M,X) \; &\coloneqq \; \big(\{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \text{ for } i \neq j\} \times X^n \big) \big/ \Sigma_n \end{split}$$

Configuration spaces - with labels - example

Configuration spaces - with labels - example

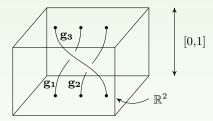
For example, fixing a discrete group ${\cal G}$,



Configuration spaces - with labels - example

For example, fixing a discrete group G,

•
$$C_n(\mathbb{R}^2, BG) \simeq B(\beta_n \wr G)$$



• in particular, taking $G=\mathbb{Z}$ (so $BG=S^1$) gives the ribbon braid group

Configuration spaces – a connection with function spaces Let M be an open connected manifold.

Let M be an open connected manifold.

- 1-point compactify each fibre of $TM \quad \leadsto \quad T^+M$
- $\Gamma(T^+M) = \text{global sections with compact support}$
- These each have a degree
- $\Gamma_n(T^+M) = \text{sections of degree } n$

Let M be an open connected manifold.

- 1-point compactify each fibre of $TM \rightsquigarrow T^+M$
- $\Gamma(T^+M) = \text{global sections with compact support}$
- These each have a degree
- $\Gamma_n(T^+M) = \text{sections of degree } n$

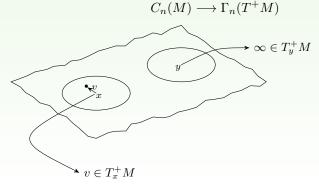
The scanning map:

$$C_n(M) \longrightarrow \Gamma_n(T^+M)$$

Let M be an open connected manifold.

- 1-point compactify each fibre of $TM \rightsquigarrow T^+M$
- $\Gamma(T^+M) = \text{global sections with compact support}$
- These each have a degree
- $\Gamma_n(T^+M) = \text{sections of degree } n$

The scanning map:



The scanning map commutes with maps

$$C_n(M) \longrightarrow C_{n+1}(M)$$

 $\Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M)$

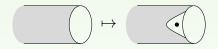
making $\{C_n(M)\}$ and $\{\Gamma_n(T^+M)\}$ into direct systems.

The scanning map commutes with maps

$$C_n(M) \longrightarrow C_{n+1}(M)$$

 $\Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M)$

making $\{C_n(M)\}$ and $\{\Gamma_n(T^+M)\}$ into direct systems.

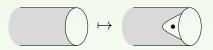


The scanning map commutes with maps

$$C_n(M) \longrightarrow C_{n+1}(M)$$

 $\Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M)$

making $\{C_n(M)\}$ and $\{\Gamma_n(T^+M)\}$ into direct systems.

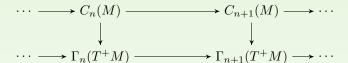


So we have a commutative ladder

$$\cdots \longrightarrow C_n(M) \longrightarrow C_{n+1}(M) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M) \longrightarrow \cdots$$



Theorem (McDuff)

The scanning map is a homology-equivalence in the limit as $n \to \infty$.

$$\cdots \longrightarrow C_n(M) \longrightarrow C_{n+1}(M) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M) \longrightarrow \cdots$$

Theorem (McDuff)

The scanning map is a homology-equivalence in the limit as $n \to \infty$.

- $\Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M)$ are homotopy-equivalences
- $C_n(M) \longrightarrow C_{n+1}(M)$ are split-injective
- The limiting homology is finite-generated in each degree

$$\cdots \longrightarrow C_n(M) \longrightarrow C_{n+1}(M) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M) \longrightarrow \cdots$$

Theorem (McDuff)

The scanning map is a homology-equivalence in the limit as $n \to \infty$.

- $\Gamma_n(T^+M) \longrightarrow \Gamma_{n+1}(T^+M)$ are homotopy-equivalences
- $C_n(M) \longrightarrow C_{n+1}(M)$ are split-injective
- The limiting homology is finite-generated in each degree

Corollary

 $H_*C_n(M) \longrightarrow H_*C_{n+1}(M)$ is an isomorphism for $n \gg *$

Homological stability

Definition

 $X_n \xrightarrow{s} X_{n+1} \xrightarrow{s} \cdots$ has homological stability if for each q,

$$H_qX_n \longrightarrow H_qX_{n+1}$$

is an isomorphism for $n \gg q$.

Homological stability

Definition

 $X_n \xrightarrow{s} X_{n+1} \xrightarrow{s} \cdots$ has homological stability if for each q,

$$H_qX_n \longrightarrow H_qX_{n+1}$$

is an isomorphism for $n \gg q$.

Stable range:



Homological stability - examples

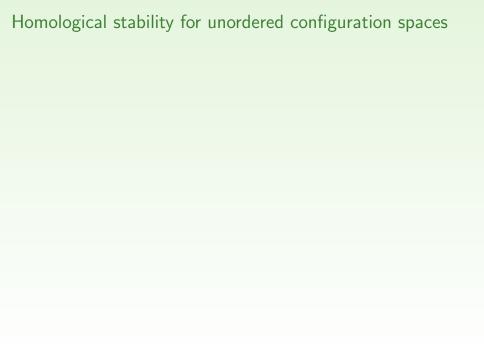
• $C_n(M)$ [McDuff, Segal, 1970s] limiting space $\cong_{H_*} \Gamma_0(T^+M)$

Homological stability - examples

- $C_n(M)$ [McDuff, Segal, 1970s] limiting space $\cong_{H_*} \Gamma_0(T^+M)$
- $\Gamma_{g,1} = \pi_0 \mathrm{Diff}^+(S_{g,1}; \partial)$ [Harer 1985, improvements by Ivanov, Boldsen] limiting space $\cong_{H_*} \Omega_0^\infty MTSO(2)$ [Madsen-Weiss] (that it's $\cong_{H_*} \Omega_0^\infty (something)$ is due to [Tillmann])

Homological stability - examples

- $C_n(M)$ [McDuff, Segal, 1970s] limiting space $\cong_{H_*} \Gamma_0(T^+M)$
- $\Gamma_{g,1} = \pi_0 \mathrm{Diff}^+(S_{g,1}; \partial)$ [Harer 1985, improvements by Ivanov, Boldsen] limiting space $\cong_{H_*} \Omega_0^\infty MTSO(2)$ [Madsen-Weiss] (that it's $\cong_{H_*} \Omega_0^\infty (something)$ is due to [Tillmann])
- $\begin{array}{ll} \bullet \ \operatorname{Aut}(F_n) & [\operatorname{Hatcher}, \operatorname{Vogtmann}, \operatorname{Wahl}] \\ \operatorname{limiting space} \cong_{H_*} \Omega_0^\infty S^\infty & [\operatorname{Galatius}] \end{array}$



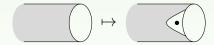
Theorem (Randal-Williams)

If M is a connected manifold of dimension at least 2 and is the interior of some manifold-with-boundary, and if X is path-connected, then

$$H_*C_n(M,X) \xrightarrow{s_*} H_*C_{n+1}(M,X)$$

is an isomorphism for $* \leq \frac{n}{2}$.

Here the map s is



Theorem (Randal-Williams)

If M is a connected manifold of dimension at least 2 and is the interior of some manifold-with-boundary, and if X is path-connected, then

$$H_*C_n(M,X) \xrightarrow{s_*} H_*C_{n+1}(M,X)$$

is an isomorphism for $* \leq \frac{n}{2}$.

Here the map s is

Corollaries

Homological stability for $\{\beta_n^S \wr G\}$ and $\{\Sigma_n \wr G\}$.

Homological stability is false:

Homological stability is false:

- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$
- explicit presentation for $P\beta_n \longrightarrow \text{its abelianisation is } \mathbb{Z}^{\binom{n}{2}}$
- ullet so $H_1\widetilde{C}_n(\mathbb{R}^2)\cong \mathbb{Z}^{\binom{n}{2}}$

Homological stability is false:

- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$
- ullet explicit presentation for $P\beta_n \quad \leadsto \quad \text{its abelianisation is } \mathbb{Z}^{\binom{n}{2}}$
- so $H_1\widetilde{C}_n(\mathbb{R}^2)\cong \mathbb{Z}^{\binom{n}{2}}$

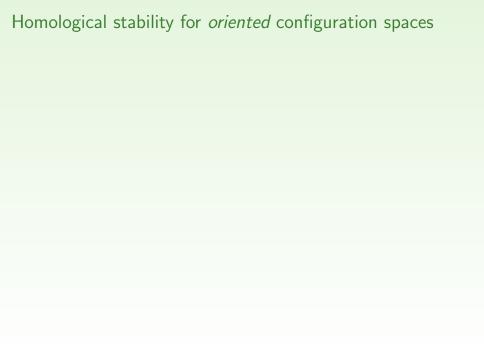
Sub-aside on Representation stability:

Homological stability is false:

- $\widetilde{C}_n(\mathbb{R}^2) \simeq B(P\beta_n)$
- explicit presentation for $P\beta_n \longrightarrow \text{its abelianisation is } \mathbb{Z}^{\binom{n}{2}}$
- so $H_1\widetilde{C}_n(\mathbb{R}^2)\cong \mathbb{Z}^{\binom{n}{2}}$

Sub-aside on Representation stability:

- Look at the rational homology $H_q(\widetilde{C}_n(M);\mathbb{Q})$ for fixed q
- We know this doesn't stabilise as a sequence of rational vector spaces
- But it *does* stabilise as a sequence of Σ_n -representations [Church]
- \bullet ... meaning that their decomposition into irreducibles has a "stable description" as $n\to\infty$



Question: Can we get homological stability for configuration spaces with some global data?

Question: Can we get homological stability for configuration spaces with some global data?

Definition

Oriented configuration space associated to M and X:

$$C_n^+(M,X) := (\{(p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \text{ for } i \neq j\} \times X^n)/A_n$$

Each configuration is equipped with an ordering up to even permutations

Question: Can we get homological stability for configuration spaces with some global data?

Definition

Oriented configuration space associated to M and X:

$$C_n^+(M,X) := \left(\{ (p_1,\ldots,p_n) \in M^n \mid p_i \neq p_j \text{ for } i \neq j \} \times X^n \right) / A_n$$

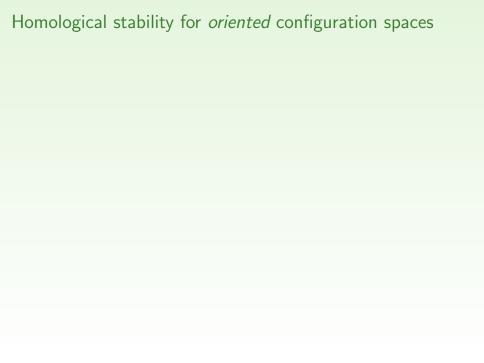
Each configuration is equipped with an ordering up to even permutations

Theorem (P)

If M is a connected manifold of dimension at least 2 and is the interior of some manifold-with-boundary, and if X is path-connected, then

$$H_*C_n^+(M,X) \xrightarrow{s_*} H_*C_{n+1}^+(M,X)$$

is an isomorphism for $* \leq \frac{n-5}{3}$.



- This result was known previously for
 - $M=\mathbb{R}^{\infty}$ (i.e. for alternating groups) [Hausmann]
 - connected open orientable surfaces M [Guest-Kozlowsky-Yamaguchi]

- This result was known previously for
 - $M=\mathbb{R}^{\infty}$ (i.e. for alternating groups) [Hausmann]
 - $\hbox{ \ \ } \hbox{ \ \ \ } \hbox{ \ \ \ } \hbox{ \ \ \ \ \ } \hbox{ \ \ } \hbox{ \ \ \ \ \ \ } \hbox{ \ \ \ \ \ \ \ \ \ } \hbox{ \ \ \ \ \ \ } \hbox{ \ \ \ \ \ \ } \hbox{ \$
- Proofs are calculational

- This result was known previously for
 - $M=\mathbb{R}^{\infty}$ (i.e. for alternating groups) [Hausmann]
 - ullet connected open orientable surfaces M [Guest-Kozlowsky-Yamaguchi]
- Proofs are calculational → give a bound on the best possible stability range in general

Homological stability for *oriented* configuration spaces

- This result was known previously for
 - $M = \mathbb{R}^{\infty}$ (i.e. for alternating groups) [Hausmann]
 - connected open orientable surfaces M [Guest-Kozlowsky-Yamaguchi]

Homological stability for *oriented* configuration spaces

- This result was known previously for
 - $M = \mathbb{R}^{\infty}$ (i.e. for alternating groups) [Hausmann]
 - connected open orientable surfaces M [Guest-Kozlowsky-Yamaguchi]
- Proofs are calculational → give a bound on the best possible stability range in general → stability slope can be at most ¹/₃
- The calculations also show that

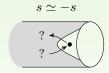
$$H_*C_n^+(M,X) \xrightarrow{s_*} H_*C_{n+1}^+(M,X)$$

is not split-injective in general.

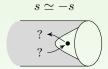
• If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:

$$s \simeq -s$$

• If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:

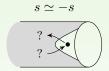


 If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:

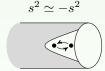


• Idea: modify the proof to instead use the iterated map $s^2 = s \circ s$.

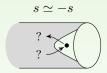
 If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:



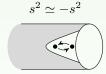
• Idea: modify the proof to instead use the iterated map $s^2 = s \circ s$. Now:



 If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:

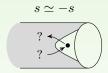


• Idea: modify the proof to instead use the iterated map $s^2 = s \circ s$. Now:

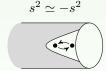


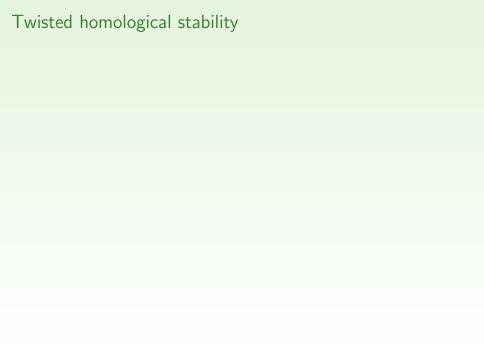
• The inductive argument now works

 If you apply the proof of the unordered case directly to the oriented configuration spaces, you at some point need:



• Idea: modify the proof to instead use the iterated map $s^2 = s \circ s$. Now:





- Let $V=\mathbb{Z}\oplus\mathbb{Z}$ with $\mathbb{Z}/2\text{-action }(x,y)\mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign

- Let $V = \mathbb{Z} \oplus \mathbb{Z}$ with $\mathbb{Z}/2$ -action $(x,y) \mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign
- So $\pi_1 C_n(M)$ acts on V via the sign map $\pi_1 C_n(M) \to \mathbb{Z}/2$

- Let $V = \mathbb{Z} \oplus \mathbb{Z}$ with $\mathbb{Z}/2$ -action $(x,y) \mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign
- So $\pi_1 C_n(M)$ acts on V via the sign map $\pi_1 C_n(M) \to \mathbb{Z}/2$

$$H_*(C_n^+(M,X);\mathbb{Z}) \cong H_*(C_n(M,X);V)$$

Reinterpret as a twisted homological stability result:

- Let $V = \mathbb{Z} \oplus \mathbb{Z}$ with $\mathbb{Z}/2$ -action $(x,y) \mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign
- So $\pi_1 C_n(M)$ acts on V via the sign map $\pi_1 C_n(M) \to \mathbb{Z}/2$

$$H_*(C_n^+(M,X);\mathbb{Z}) \cong H_*(C_n(M,X);V)$$

Examples where twisted homological stability is known:

Reinterpret as a twisted homological stability result:

- Let $V = \mathbb{Z} \oplus \mathbb{Z}$ with $\mathbb{Z}/2$ -action $(x,y) \mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign
- So $\pi_1 C_n(M)$ acts on V via the sign map $\pi_1 C_n(M) \to \mathbb{Z}/2$

$$H_*(C_n^+(M,X);\mathbb{Z}) \cong H_*(C_n(M,X);V)$$

Examples where twisted homological stability is known:

- $GL_n(R)$ (R any PID) [Dwyer]
- mapping class groups of surfaces [Ivanov, Cohen-Madsen, Boldsen]
- Σ_n [Betley]

Reinterpret as a twisted homological stability result:

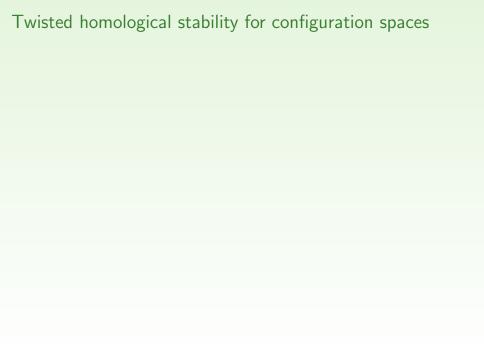
- Let $V=\mathbb{Z}\oplus\mathbb{Z}$ with $\mathbb{Z}/2$ -action $(x,y)\mapsto (y,x)$
- Elements $[\gamma] \in \pi_1 C_n(M)$ have a sign
- So $\pi_1 C_n(M)$ acts on V via the sign map $\pi_1 C_n(M) \to \mathbb{Z}/2$

$$H_*(C_n^+(M,X);\mathbb{Z}) \cong H_*(C_n(M,X);V)$$

Examples where twisted homological stability is known:

- $GL_n(R)$ (R any PID) [Dwyer]
- mapping class groups of surfaces [Ivanov, Cohen-Madsen, Boldsen]
- Σ_n [Betley]

You need an appropriate notion of *finite-degree coefficient system* in each case.



Twisted homological stability for configuration spaces

The Σ_n result generalises to:

Theorem (P)

For any coefficient system of $\pi_1C_n(M,X)$ -modules V_n of degree d, and M and X as before,

$$H_*(C_n(M,X);V_n) \longrightarrow H_*(C_{n+1}(M,X);V_{n+1})$$

is an isomorphism for $* \leq \frac{n-d}{2}$.

Twisted homological stability for configuration spaces

The Σ_n result generalises to:

Theorem (P)

For any coefficient system of $\pi_1C_n(M,X)$ -modules V_n of degree d, and M and X as before,

$$H_*(C_n(M,X);V_n) \longrightarrow H_*(C_{n+1}(M,X);V_{n+1})$$

is an isomorphism for $* \leq \frac{n-d}{2}$.

 Note: such coefficient systems do not include the sequence of coefficients V of the previous slide.

Twisted homological stability for configuration spaces

The Σ_n result generalises to:

Theorem (P)

For any coefficient system of $\pi_1C_n(M,X)$ -modules V_n of degree d, and M and X as before,

$$H_*(C_n(M,X);V_n) \longrightarrow H_*(C_{n+1}(M,X);V_{n+1})$$

is an isomorphism for $* \leq \frac{n-d}{2}$.

- Note: such coefficient systems do not include the sequence of coefficients V of the previous slide.
- The theorem allows systems of $\pi_1C_n(M,X)$ -modules which don't necessarily come from a system of Σ_n -modules via the projection $\pi_1C_n(M,X) \twoheadrightarrow \Sigma_n$.